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POETS- Partial Ordered Event Triggered Systems  
-  

Project partner precis 
 
Moore's Law has given us a doubling of logic density every eighteen months or so for over four 
decades. It has enabled microelectronics to move from a narrow professional niche into the hands 
and pockets of every consumer in the world. However, as process geometries continue to shrink 
towards the scale of the atom, we face the emergence of fundamental limits which the scaling of 
current methodology can no longer easily overcome; increasingly, far ranging architectural - both 
hardware and software - changes are required to utilise the potential of the technology. Four major 
challenges can be identified: 
 
● Power dissipation: it is already not possible to power all parts of a chip at the same time (the 

dark-silicon problem). It has been demonstrated that multiple small CPUs are correspondingly 
more power efficient than fewer large ones, so the deployment of large cohorts of small CPUs 
is an obvious way forward. 

 
● Reliability: As process geometries continue to shrink, issues of reliability and robustness 

inevitably emerge. In a system of millions of cores (not unreasonable today), it is unrealistic 
to expect 100% functionality 'out of the box'; equally, cores will inevitably fail over the 
lifetime of the system. 

 
● Communication vs computation: A traditional argument against moving to large numbers 

of cores is the relative cost of computation and communication. A core can typically perform 
several thousand operations in the time taken to get a single word out of memory and made 
available to a core. Ever deeper caches and convoluted pipelines can help alleviate the 
problem, but with conventional architectures, bottlenecks are still almost unavoidable. 

 
● Programming: In the past, processor time (core hours) was a valuable resource, and much 

work went into understanding how to optimise the scheduling of a workload on parallel 
machines. The automatic (high-level) parallelisation of general-purpose codes remains a 'holy 
grail' of computer science, but fine-grain parallelisation is frequently signposted by the 
underlying mathematics. The problem has been in the past that solutions emerging naturally 
from a numerical solution technique do not map well (cheaply) onto existing architectures, 
partly because cores were relatively scarce, compared to the granularity of a discrete solution. 
Today, processing is effectively a free resource: cores do not have to be 'kept busy'. 

 
These considerations form another set of constraints on a design space that is already extremely 
complex. However, they also open the way to new approaches: design space may become more 
convoluted, but it also gets bigger. 
 
Whilst there is no way through Amdahl’s Law (The proportion of code that cannot be parallelised 
will ultimately limit the advantages accrued from more processors), the Gustafson-Barsis Law does 
permit a way around it: (If you can have an arbitrary number of processors, the total amount of 
work performed by the system may be increased arbitrarily at no extra cost). 
 
POETS technology exploits this and explicitly addresses all these points simultaneously. 
 
What is POETS? 
 
POETS - Partial Ordered Event Triggered Systems - technology is based on the idea of an 
extremely large number of small cores, embedded in a fast, hardware, parallel communications 
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infrastructure - the core mesh. Inter-core communication is effected by small, fixed size, hardware 
data packets (a few bytes) - aka messages. 
 
This proposal describes research to investigate and prototype a software methodology and 
associated hardware platform to realise the potential of this architecture. 
 
The physical implementation of such a system imposes a fixed and finite topology on the core graph, 
but a thin (hardware) layer on top of the cores allows the user to virtualise an arbitrary connectivity 
graph on top of the physical one. Once this is done, the mapping of problem domain to processor 
mesh follows naturally. 
 

For example, a surprising number of industrial problems map naturally and ultimately to 
solution of the matrix equation [A]x = [B], and the efficient solution of this prima facie 
simple problem for large (say, rank 1000) and ill-defined systems is still the subject of 
current research. Using POETS technology, each matrix element can be mapped onto 
its own core: textbook solution techniques become possible because element-element 
communication is truly (hardware) parallel across the entire matrix. Traditionally, 
calculations of this type require polynomial time; POETS can perform the calculation in 
linear time - a massive difference with large industrial problem sets. 

 
 
 

 
 

Provenance: 
This proposal is a follow-on from the EPSRC grant "Biologically-inspired massively 
parallel architectures - computing beyond a million processors". This succeeded "A 
scalable chip multiprocessor for large-scale neural simulation" and "Efficient VLSI 
architectures for inexact associative memories". The headline goal for all these activities 
has been large-scale neural simulation, brokered by a highly specialised event-based 
parallel architecture (SpiNNaker - Spiking Neural Network Architecture). 
 
Two fundamental research questions were addressed: 
 
• How can massively parallel computing resources accelerate our understanding of 

brain function? 
• How can our growing understanding of brain function point the way to more 

efficient parallel, fault-tolerant computation? 
 
During this work, it became apparent that other, equally rewarding problem domains 
are amenable to attack by the methodology embodied in the SpiNNaker architecture[1]. 
The inevitable conclusion is that SpiNNaker is simply the first (existence proof) of a new 
form of parallel computing known as POETS (Partially Ordered Event Triggered Systems), 
one application of which is neural simulation; the overarching goal of this proposal is to 
develop this new form of computing capability, diversifying into new problem domains. 
 
This work is inspired by (and a deliverable from) the latter question. 
 
[1] Reliable computation with unreliable computers, IEE-CDT doi:101049/iet-cdt.2014.0110 
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Why now? 
 
Because we can - ten years ago it was not possible. 
 
In 1965 Gordon Moore published his famous prediction: that the number of transistors on a chip 
would double every 18 months or so. This is not a law, just a market prediction, yet it has become a 
self-fulfilling prophecy that has guided industry for decades. However, it is an exponential 
prediction, and no exponential is sustainable indefinitely in nature. 
 
Moore's Law is coming to an end, gradually, not because of any one particular show-stopping 
physical limit, but because of a host of effects, each one in isolation probably capable of resolution, 
but taken together present an insuperable barrier: it simply isn't worth it any more. 
 
But: if we focus on the last few years of this line, and recalibrate the axes in terms of cores/chip 
instead of transistors/chip, we see the beginnings of a new law: the number of cores/chip is 
increasing by some multiple/year. Yes, it is an exponent, and so it won't last, but while it does, we 
should exploit it. 
 
POETS fits into the landscape described above in innovative ways: 
 
● Power dissipation: POETS is an event-driven system. Cores carry out small calculations in 

response to the arrival of a message, based on a state subset held in local memories. These 
calculations may/may not result in the emission of further messages, which are immediately 
swept up by the communication infrastructure and delivered asynchronously, via hardware, to 
their target core. The target core is woken (by the hardware delivering the message), acts upon 
it - as above - and returns to quiescence, awaiting another stimulus. POETS is intrinsically 
energy frugal - you only power calculations when you perform calculations. The design 
intention is that for a significant portion of time, each core is asleep. This is a programming 
model of immense power and enormous potential, and is completely orthogonal to 
conventional architectures. 

 
● Reliability: POETS architecture is intrinsically resilient (see Provenance box above) in the 

face of hardware failure for two reasons: (1) one way of thinking about a POETS core is to 
view it as an asynchronous finite state machine. Like its conventional counterpart, there is no 
reason why its state transition graph cannot be disjoint - POETS cores can multi-task at an 
event level, and so can run inconspicuous system integrity checks in parallel with anything 
else, allowing possible recovery and/or graceful performance degradation in the face of core 
or communication fabric failure. (2) is rather more subtle, and not applicable to all problem 
domains. The dominant use intention of the system is that a fine-grained mathematical model 
is mapped to the core mesh for subsequent processing - usually but not always some kind of 
simulation. Failure of a core (or part of the communication fabric) therefore has the effect of 
compromising the simulation model (specifically the state subset held in the failed area), 
rather than the algorithm, which is distributed over the entire system. For a certain subset of 
problems (notably relaxation-based simulations), this perturbation is minimal, localised and 
does not propagate. 

 
● Communication vs computation: POETS sidesteps this tension by 'embedding' the cores in 

a hardware communications fabric (which is truly parallel) and in which the messages are 
small and of fixed size (a few bytes). (This is one of the core outcomes of the SpiNNaker 
project.) With POETS machines, the burden of high-level message choreography is 
completely removed (there are none): systems trade cores against complexity in both compute 
and communications.  
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● Programming: This is the area where the largest research challenges lie. Our work with 
SpiNNaker has demonstrated the validity of the POETS concepts, but the use cases to date 
have all been hand-crafted. The challenge here is to find a way in which domain-specific 
specialists - who neither know nor care about the underpinning technology - can use the 
system to attack large, industrially important problems, focussing on the problem, without the 
distraction of the solution technique and details. 

 
Taken together, these attributes represent a significant sea-change in the way in which large, 
industrially relevant problem sets may be attacked. POETS is not a general-purpose architecture, 
but nor is it a corner-case; it is elegantly suited to a wide variety of industrial problems: 
 
● Finite difference and finite element problems 
● Computational chemistry 
● Particle & field 
● Image processing 
● Neural synthesis and simulation (Human Brain Project) 
● Drug screening 
● Discrete system simulation  
 
In fact, anything where the underlying mathematics naturally formulates as a large graph with large 
numbers of small, parallel interactions, and no overarching synchronisation requirement. 
 
For some - not all - industrial problems, POETS architectures are capable of delivering 
orders of magnitude speed increases. 
 
What needs to be done? 
 
Our past work (see Provenance box above) delivered the first large-scale existence proof of the 
power of this concept. If we are to exploit this hitherto underexplored and unconventional 
computing technology, there is still much research to be done. For nearly every step of the 
development trajectory to date, almost every tool and technique that a conventional software 
developer takes for granted has had to be re-engineered from scratch. Conventional support tools do 
not work with this system. We need standardised input formalisms, we need command, control, 
internal visibility and debug tools, we need to know where the limits are of an instance of the 
architecture, and how difficult and expensive it is to move these limits. 
 
Why should we bother? 
 
Despite decades of attack, the general purpose parallelisation problem remains one of the most 
elusive 'holy grails' of computer science. Inspired - possibly - by what we achieved by simply 
ignoring difficult general problems in our past neural simulation work, and focussing on the 
functionality we actually needed, our thesis here is that POETS is incredibly well-suited to an 
unexpectedly wide range of important engineering and physics problems, most of which are 
traditionally the domain of large, extremely resource hungry supercomputers. Event-driven 
programming, using thousands to millions of small, cheap, energy frugal cores is by far the best 
platform for some massive engineering problems that traditionally consume millions - tending to 
billions - of core-hours and watts, both of which translate directly into money. Proponents of 
exascale computing need event-driven machines if budgets are to remain sub-exascale. 
 
The problem is not creating large cohorts of processors, but how they might be productively used to 
perform or enable the sort of analyses that users of big compute demand. The project focuses on the 
potential of the hardware architectural point on the scale represented by the earlier SpiNNaker work. 
It will look at the areas of work where the hardware architecture would be well suited, how those 
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SpiNNaker and POETS: 
SpiNNaker is a distributed multi-core system, consisting of a network of 65 000 nodes, (each 
containing 18 200MHz ARM9 cores), embedded in a bespoke (hardware) message-passing 
infrastructure. The nodes are triangularly connected in a two-dimensional (2D) planar mesh, 
the edges of which are identified with each other and the whole plane wrapped onto the 
surface of a torus. Cores communicate via hardware packets of 72 bits. Each node also 
contains a router unit to control all packet movements, both inter- and intra-node. The design 
of SpiNNaker explicitly disregards three of the central planks of computer architecture dogma: 
 
1. There is no central synchronising system clock, and all the inter-node (and much intra-node) 
communication is asynchronous. 
 
2. There is no attempt made to enforce overall memory coherency. Each core has its own 
private memory, which is not visible to any other core. 
 
3. The message passing infrastructure is non-deterministic (and may, under certain 
circumstances, be non-transitive). 
 
SpiNNaker is designed for use as a neural simulator. At the level of abstraction utilised by 
SpiNNaker, a neuron consists of a multi-input, multi-output unidirectional discrete 
component, communicating with its peers via action potentials, modelled as discrete events. 
A neural system or circuit is represented as a graph of neurons, mapped onto the physical 
core mesh. A thin hardware layer (the routing system) enables transparent neuron-neuron 
communication over the underlying hardware - the biological model does not 'see' the 
underlying electronics. 
 
SpiNNaker is intended to simulate neural aggregates in real time: the biological information 
contained within a packet resides in the wallclock time of arrival; the 72 bits interact with the 
underlying routing system to ensure the right packet gets to the right neuron model. 
 
POETS: SpiNNaker is extremely good at the task for which it was designed: neural 
simulation. The idea of virtualising an abstract arbitrary graph and mapping it to hardware via 
a thin, hardware, parallel routing layer is immensely powerful, and opens the door to a large 
array of application domains. However, SpiNNaker is an ASIC, and contains aspects - that we 
cannot change - that make it unsuitable for the generalisations we wish to explore in POETS. 
 
● In biology, the existence of a spike (packet) contains the only biological data. It is here 

at this time, or it isn't; this is how mammalian neural systems work. For more diverse 
applications, we need to be able to put more data into a packet. To keep the speed 
advantage, the packet size must be small and fixed size, but the bit length of 
SpiNNaker is crippling for other domains. A few dozen bytes would be fine; 72 bits is 
not enough. 

 
● Data exfiltration: SpiNNaker relies on gross neural activities for I/O - this is how 

biological systems work. We need to be able to extract global state data reliably. 
 
● Global synchronisation: Biological systems do not support this behaviour - neither does 

SpiNNaker. There exists a wide set of circumstances - in diverse application areas - 
where this functionality is essential. 
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 needs can be supported on this architecture by methods and tools, and how the architecture may be 
further optimised, with the objective of providing the basis of knowledge to support valuable 
commercial exploitation opportunities anticipated to emerge for commodity HPC. 
 
POETS is a different type of computing architecture; no mature tools or techniques currently exist 
to exploit it fully, and physical implementations are not yet commonplace. However, this will 
change: the architecture is unusual but has the attraction of being the choice of evolution - it is the 
architecture of all neural cortexes, including our own brains. It is highly functional, extremely 
power efficient and very fault tolerant. Whilst it demonstrably can be programmed, research is 
needed to make it a commodity capability on a par with the architectures found in almost every 
electronic system today. 
 
Aims of the research 
 
The phrase "Technology Readiness Level (TRL)" has several definitions, not all of which are 
mutually consistent, but in essence POETS is currently squarely at TRL 1: the basic principles have 
been observed and reported. The goal at the project end is to take the concept at least to TRL 4: 
(Validation of the concept in laboratory conditions), preferably, with the assistance of the project 
partners, to TRL 5: (Validation of the concept in a relevant domain-specific environment.) 
 
The long-term strategy is to be in a position, at the end of the project, to be able to approach tool 
vendors and specialist product providers with a solution technique - cast in domain-specific terms 
that they are familiar with, demonstrating solutions to real problems that they care about - and 
make a case for the commercial uptake of the developed technology. 
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End users for POETS technology: 
 
Who are they? Engineering, drug exploration, industrial tomography, image 

processing, simulation, big physics, weather modelling, 
genome scanning... industry, not domestic. 
 

What do they want? Commodity HPC: To be able to run complex, real-world 
simulations and explorations without concern for the cost, 
either in terms of money or time. 
 

Where do they want it? Desktop: The use should be as unthinking as a traditional 
compiler or simulator. 
 

When do they want it? Whenever they choose - and this is important: "I'll just try 
this" lets engineers stay focussed on the problem, not the 
implementation of the solution process. And, of course, "this" 
can be a raft of potential solutions in parallel.  
 

Why do they want it? If HPC access costs disappear from budget sheets, the 
specification and acquisition moves down the 
management/accounting chain to the realm of the people that 
actually use the tools. (Twenty years ago, computing 
hardware was a major capital item, and the maintenance 
infrastructure important continuous costs. Now, powerful PCs 
appear on budget sheets - if at all - as stationery.) 
 

 

Key points: 
 
Architecture 
 
● Extremely large numbers (1000000+) of extremely simple cores 
● Short (a few bytes), uniform messages 
● Hardware massively parallel communications network (on and off-chip) 
 
Disadvantages 
 
● Not a general purpose architecture 
● Cannot port existing codebases 
● No existing support toolsets 
 
Advantages 
 
● Massive speedups for certain classes of problem: O(nm)  →  O(k) 
● Highly fault tolerant 
● Low power: 25000 cores < 13A 
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Use cases 
 
A large proportion of real engineering problems can be broken down to a discrete graph, albeit one 
with sometimes millions of nodes. If we have millions of cores and a fast communications 
infrastructure, we can trade cores off against computational complexity, and exploit the near-perfect 
parallelism of the hardware interconnect. The Use case portfolio suggests some of the industrial 
application areas for POETS technology. 
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Use case: Finite difference calculations 
 
Consider the canonical finite difference heat 
equation on a 2D square grid: each grid point is 
represented by an individual core, which holds 
the grid point state (temperature) plus ghosts of 
the immediate neighbouring states, and 
communicates only with its direct neighbours 
by messages. On receipt of a message - any 
message - a grid point recomputes its state; if 
this has changed, it broadcasts the new state 
value to its neighbours. All the cores do this 
simultaneously (asynchronously), triggered by 
the arrival of messages. Pinning the opposite 
corner temperatures and letting heat flow freely 
produces the obvious result. 
 
The interesting point is the wallclock solution time as a function of grid size: the 
algorithm, as cast, will continue to operate in constant time, using more and more cores 
as the user increases the grid size, until it runs out of physical resource. 

 
 
 
 
 
There is, obviously, no 
reason why we need 
restrict our analyses to a 
uniform grid: 

2.2GHz desktop  

200MHz 768 core SpiNNaker engine 
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Use case: Neuron synthesis 
 
Large scale neural simulations - 
which underpin almost all of 
computational neuroscience - require 
realistic models to simulate, and the 
generation of these models is not 
trivial or computationally cheap. IN 
biology, 1mm3 of neural matter 
contains around 105 cell bodies, 4km 
of axons, 5.106 dendrites and 7.109 
synapses. Each neuron is represented 
as a space-filling tree, which does 
not intersect with itself or any other 
neuron. Vasculature - essential for 
accurate modelling - approximately 
doubles the complexity of the space. 
 
A popular way of approaching this problem is to tile space (the universe) with three-
dimensional cubes, populated with 'virtual neurites'. These move about randomly, 
condensing (and sticking) onto a seed neuron whenever they touch one. 
 
Using POETS methodology, we can allocate each spatial 3-cube to an individual core, 
and handle the passage of neurites and the growth of neurons across cube boundaries by 
passing messages. Run 0 below shows the universe modelled by one POETS core; run 5 
by 32 x 32 x 32 (= 32768) cores. (Intermediate data points are for 23, 43, 83 and 163 
cores.) The figure itself is a simulation, but nevertheless the speedup trend is clear and 
impressive. 
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Use case: Spatio-temporal simulation of stochastic biochemical processes 
 
Biochemical processes are increasingly being modelled in-silico, where a low-level 
description of chemical interactions is used to drive a simulation of higher-level 
biological activities; these models have been made possible by improved abilities to 
automatically extract individual molecular pathways. Modelling the interactions within 
an entire cell is computationally infeasible, due to the large number of molecules, and 
the huge number of interactions needed for the cell to make enough progress to be 
interpreted at a high level. 
 
Approximations are used to interpret and capture 
low-level processes as coarse behaviour, which 
have recently allowed the creation of whole-cell 
models for simple bacteria. However, there remains 
the question of whether some important behaviour 
is only captured by the low-level interactions, so 
there is still a need to perform high-fidelity 
simulations of chemical processes which track 
individual molecules. 
 
Current cell simulation techniques provide an efficient method for simulating systems 
with tens of thousands of reactants, but current compute systems are too slow to come 
close to the speed needed to model all interactions within a cell. The spatial nature of 
the problem, and the heavy reliance on local lightweight communication, means that 
space can be discretised and each cube mapped onto a core: 
 
● Loose temporal coupling: the notion of time within a simulated system is 

intrinsically fuzzy, and only local causality matters. 
● Local fault tolerance: as long as molecules can propagate between local 

volumes within a spatial region, the failure of one or two volumes within that 
region is largely irrelevant. 

● Scaling via spatial decomposition: due to the huge number of molecules 
involved, the problem can be decomposed spatially until all available CPUs are 
occupied, achieving good utilisation of all available CPUs. 

 
As well as being a good fit for the architecture, stochastic chemical simulation also 
presents some interesting challenges and research opportunities: 
 
● Dynamic molecule balancing: during the simulation molecules naturally migrate 

around the system, potentially requiring cores to negotiate the size of the volume 
they manage. 

● Dynamic rate balancing: the rate at which reactions within a volume occur 
depends on the number and balance of local molecules, and "hot" areas will 
eventually limit the rate of progress within the entire system. 

 
Overall we can expect to see this application scaling linearly with the number of cores 
in the system; where a traditional multi-core or GPU simulation becomes 
communication limited, the intrinsic spatial communication capabilities of POETS 
means the bottleneck is removed. 
 

J. Shillcock, Langmuir 2012, 28, 541-547 
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Use case: Particle & field 
 
Advances in conventional computer technology have 
made it feasible to simulate the mutual interactions of 
huge ensembles of particles, but at a massive core-hour 
cost. By employing sometimes innovative and sometimes 
brutal approximations, it is possible, for example, to 
model the migration of proteins through a cell wall at the 
level of individual particles (where a particle is a group 
of atoms - a sort of sub-molecule). These computational 
experiments push at the boundaries of what is possible 
today - and the further introduction of long-range forces 
into the experimental regime (for example electrical 

charge) places many 
interesting and useful 
studies out of range. The 
difficulty here lies in the 
fact that non-trivial 
forces extend over many 
particle-particle 
separations, making the 
computational graph 
necessary to solve the 
system almost a clique. 
Any attempt to 
parallelise such a system 
computationally rapidly 
becomes communication 
bound.  
 
POETS, however, offers 
a (partial) solution to this. 
Whilst particle-particle 
analyses will not map 
usefully onto a POETS 
system, an alternative 
representation, particle & 
field, does. In a particle 

& field analysis, space is tiled, and each core "owns" a volume, managing the particles 
that inhabit that volume. Particles do not, however, interact with each other, they 
interact with a global field (which may be multi-valued in space):  
 

Particles tell the field how to deform, and 
the field tells the particles how to move. 

 
The big difference - from POETS point of view - is that deformations in the field can 
spread out from their source via core-core communication, and the intensity of the field 
can be calculated locally (and simply) by the local core - no reference back to the 
originator of the perturbation is necessary. Particles derive the force incident on them 
from the local field: again, information that is to hand. 
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Use case: Industrial image processing 
 
At their core, many industrial problems resolve to [A]x = [B] or similar. Whilst matrix 
solution techniques are the stuff of undergraduate textbooks, industry is interested in 
matrices of massive ranks (thousands), which are often sparse and ill-conditioned. 
Further, sequences of matrices that represent continuous processes are often mutually 
inconsistent. 
Mapping a core to each matrix element allows the inversion of matrix equations in 
O(n) time, better than any low-thread solution on a conventional machine. This opens 
the door to a host of real-time image based applications: 
 
Medical: detailed non-invasive tomographic imaging 
of biological structures - bones, brains, vascular 
systems; image-guided surgery. The last requires the 
reconstruction of images that are noisy and fast moving 
(typically around 106 points/s), where inaccuracy can 
easily cause death. 
 

 
 
Measuring ionospheric weather: can decrease the 
error of GPS fixes by a meter. So what? GPS guided 
ocean oil drilling costs around 106 £m-1. 
 
 
 
 
 

 
Inverse field problems: detection and location of 
submerged cylindrical magnetohydrodynamic 
anomalies 
 
 
 

 
 
Production line quality control: mixing efficiency, 
void detection, structural integrity 
 
 
 
 

 
Embarrassingly parallel: rendering virtual reality 
 
 

Endoscope 

Aorta 

C.N. Mitchell, University of Bath 

W. Yang, University of Manchester 
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Use case: Drug screening 
 
Computational chemistry has a long way to go before the interactions of drugs and cells 
can be modelled and simulated accurately and usefully at a molecular level. The 
difficulty arises from the sheer volume of computation necessary to model the 
interactions of the millions of atoms comprising 
even the simplest biological drug-
relevant system. 
 
The natural response of the 
simulation engineer in this situation is to 
increase the level of granularity of the 
system, modelling at larger and larger 
resolutions, which exposes a 
dilemma: the higher the modelling 
level, the more tractable the total 
problem, but on the other hand, by 
coarsening the level of modelling 
abstraction, interactions were 
discarded that may turn out to be 
dominant in some unexpected way; 
and the ultimate object of 
simulation is to illuminate 
interactions that were unexpected. The 
art of modelling for simulation - in 
any discipline - consists of finding 
ways to capture relevant interactions as 
simply as possible without compromising (too much) the representation of reality 
embodied in the model. 
 
Drug discovery is the process through which potential new medicines are identified. It is 
traditionally slow and labour intensive, but remains a vital step in the identification of 
new medicines and treatments. A difficulty arises from the fact that even the simplest 
drug interacts not only with its primary target (cell), but also with secondary structures - 
other proteins in other cells. These also interact with each other, in complex ways, 
making the prediction of the impact of a specific pharmaceutical intervention an almost 
impossible task, unless the system is modelled at infeasible levels of granularity. 
One attempt to overcome this bottleneck employs a radically different methodology to 
represent a cell and its constituent proteins: a cell is represented by a graph. The nodes 
of the graph are the proteins contained within the cell, and the edges of the graph the 
known protein interactions. These edges may themselves be quite complex, to model 
known adjuvant and chaperoning effects. In a similar manner, a potential drug may be 
represented by a graph, modelling the effects of the drug on specific proteins. The 
screening process then involves running a "cross-product" between the biological cell 
library and the putative drug, analysing the effects by looking at the topology of the 
affected cell graphs. 
 
None of the steps in this process are particularly individually demanding, but again the 
difficulties arise from the sheer size of the graphs: a cell graph can contain tens of 
thousands of nodes. Mapping the model graph nodes onto POETS cores opens the way 
to parallelising the graph-graph interactions, with a potentially dramatic impact on 
computational throughput. 

eTherapeutics 
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Use case: Discrete simulation 
 
In 1979 - four years before the PC became available - a paper about discrete simulation1 
was published by the IEEE, where the authors stated in the abstract: 
 
... We propose a distributed solution where processes communicate only through 
messages with their neighbours; there are no shared variables and there is no central 
process for message routing or process scheduling. Deadlock is avoided in this system 
despite the absence of global control. Each process in the solution requires only a 
limited amount of memory..... 
 
They were talking abut POETS, thirty-six years ago. 
 
The match to the POETS technology is quite 
remarkable; mapping one logical device to 
each core - something unimaginable in 1979 
- allows the simulation of industrially 
relevant systems today. The perennial 
problem of maintaining overall simulation 
causality is elegantly overcome by the 
introduction of timing events that are 
broadcast along the same signal paths as 
contained in the circuit under simulation; 
thus the overhead is an approximate doubling of the signal traffic, a negligible cost 
considering the speed gearing from all the cores. 
 
Further levels of sophistication are possible: where the circuit under simulation has 
more devices than the POETS engine has cores - it can happen - we can map multiple 
devices to a single core, and further, allow the POETS engine to dynamically modify 
this mapping, load-balancing the simulation on the fly. 
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Use case: Weather modelling 
 
Weather modelling involves predicting the interactions of wind, solar radiation, ground 
conditions, pollution and a host of other features into a numerical model whose state is 
capable of extrapolation into the future in a computational timeframe that is faster than 
real time - there is little point in coming up with an accurate prediction of tomorrows 
weather if it takes two days to do it.  
 
Current methodologies decompose the atmosphere into a non-uniform (multi-scale) grid, 
and solve the equations concerning the movement of air between grid cells, ensuring 
continuity of pressure, temperature, density et al across the cell boundaries. The 
atmosphere over the UK is divided into cells around 1.5 km on a side (giving a UK - 
based cell count of around 6.107 cells); over Europe around 4 km on a side and the rest 
of the world is modelled at a resolution of around 17 km. 
 
The solution technique 
revolves around mapping 
the atmospheric cells onto 
the available cores of 
whatever machine is being 
used to solve the system - 
there is a tradeoff between 
cell size (accuracy - pushes 
the cell size down) and the 
inter-core traffic load 
(speed - which pushes the 
cell size up). Much effort 
is required to find the 
'sweet-spot', resulting in 
the best accuracy from the 
fastest cell configuration. 
(Much effort is also 
expended in finding better 
models to represent the 
atmospheric behaviour, but 
POETS solves equations, it 
does not derive them.) 
 
Using ever smaller cells - and mapping only a handful of these to each POETS core - 
provides two-fold benefits: the cell-cell traffic maps comfortably onto the hardware 
routing fabric of the engine (which in any case in POETS engines is hardware and fast); 
and the equations governing the behaviour of the atmospheric model can become much 
simpler, as the range scale of the non-linearities intrinsic to the physics become 
comparable to the new, reduced cell resolution.  
 
 
 
 
 


